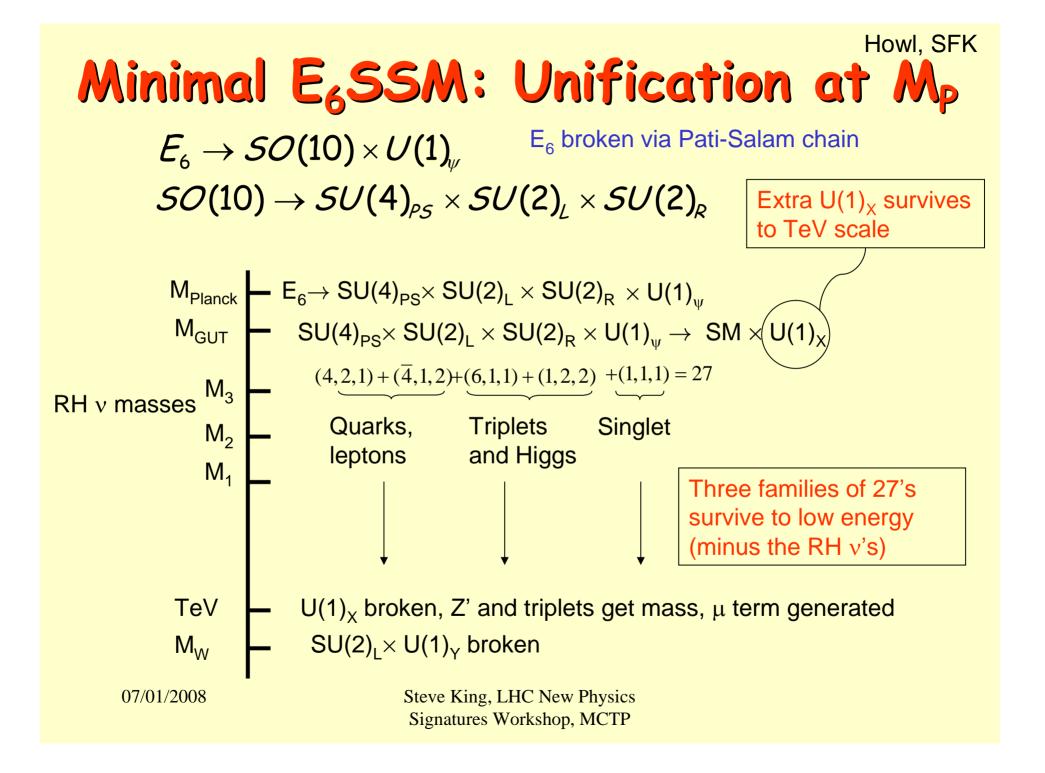
The Constrained E₆SSM and its signatures at the LHC

Work with Moretti and Nevzorov; Howl; Athron, Miller, Moretti, Nevzorov

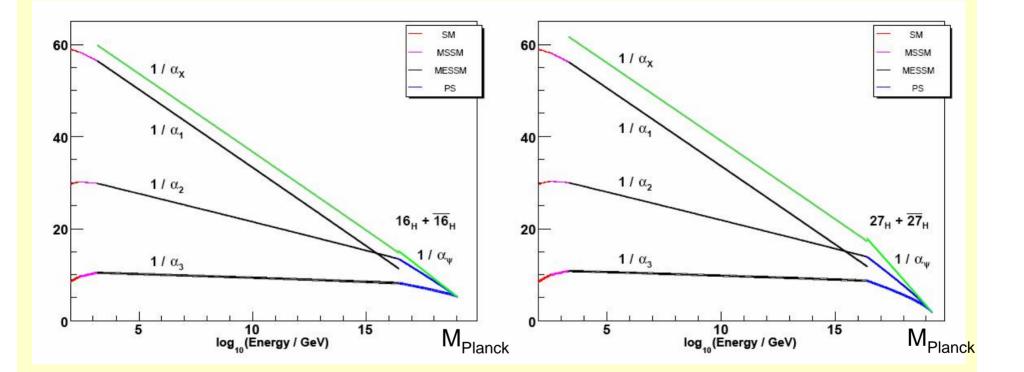
Related work:

Demir, Kane, T.Wang; Langacker, Nelson; Morrissey, Wells; Bourjaily; Cvetic, Demir, Espinosa, Everett, Langacker; J.Wang; Keith, Ma; Daikoku, Suematsu; Demir, Everett; Hewett, Rizzo; Barger, Langacker, Lee, Shaughnessy, many others (apologies)

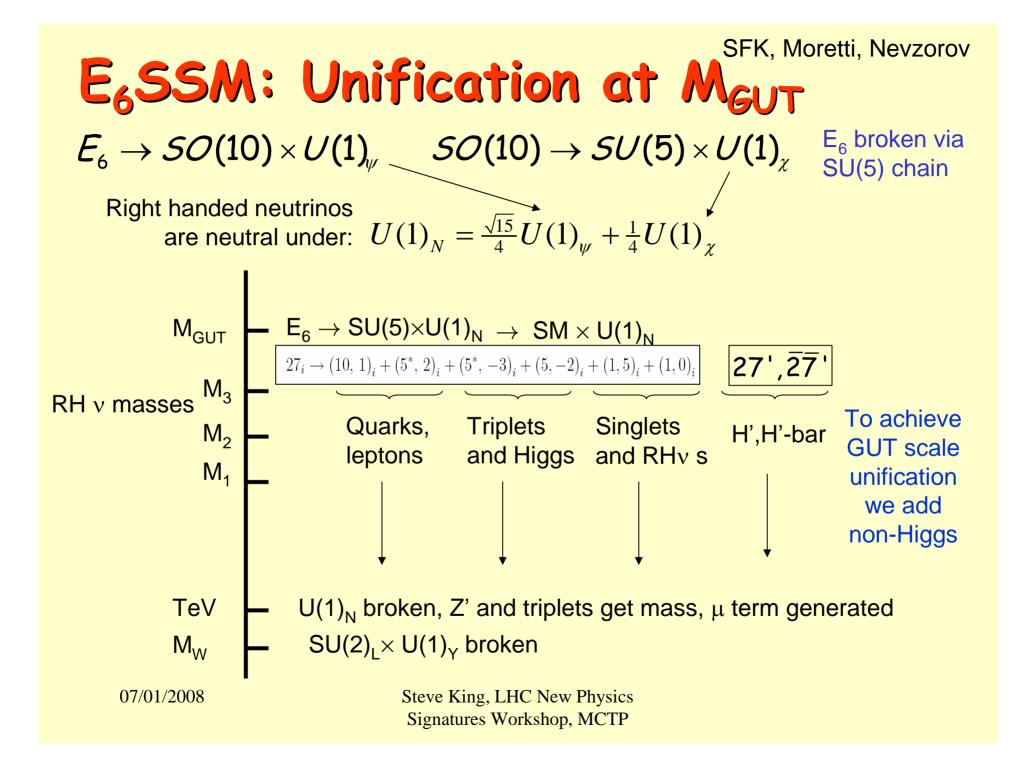

The μ problem

- •MSSM solves "technical hierarchy problem" (loops)
- •But no reason why Higgs/Higgsino mass $\mu \sim m_{soft} \rightarrow$ the " μ problem".
- •In the NMSSM $\mu = 0$ but singlet allows SHuHd \rightarrow <S> Hu Hd where $~<\!S\!>\sim \mu$
- •S³ term required to avoid a massless axion due to global U(1) PQ symmetry
- •S³ breaks PQ to Z_3 resulting in cosmo domain walls (or tadpoles if broken)
- •One solution is to forbid S³ and gauge U(1) PQ symmetry so that the dangerous axion is eaten to form a massive Z' gauge boson \rightarrow U(1)' model

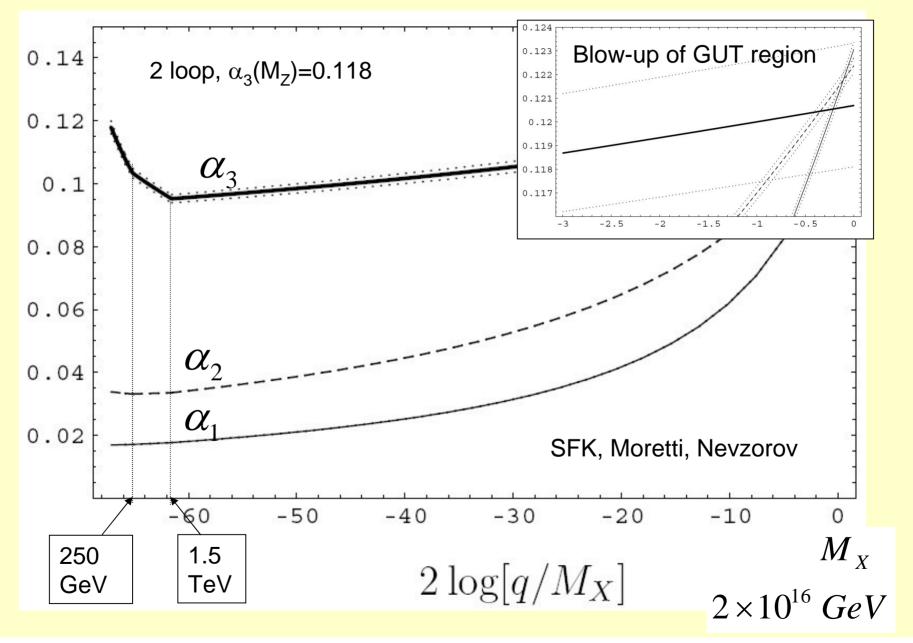
•Anomaly cancellation in low energy gauged U(1)' models implies either extra low energy exotic matter or family-nonuniversal U(1)' charges


•For example can have an E_6 model with three complete 27's at the TeV scale to cancel anomalies with a U(1)' broken by singlets which solve the μ problem

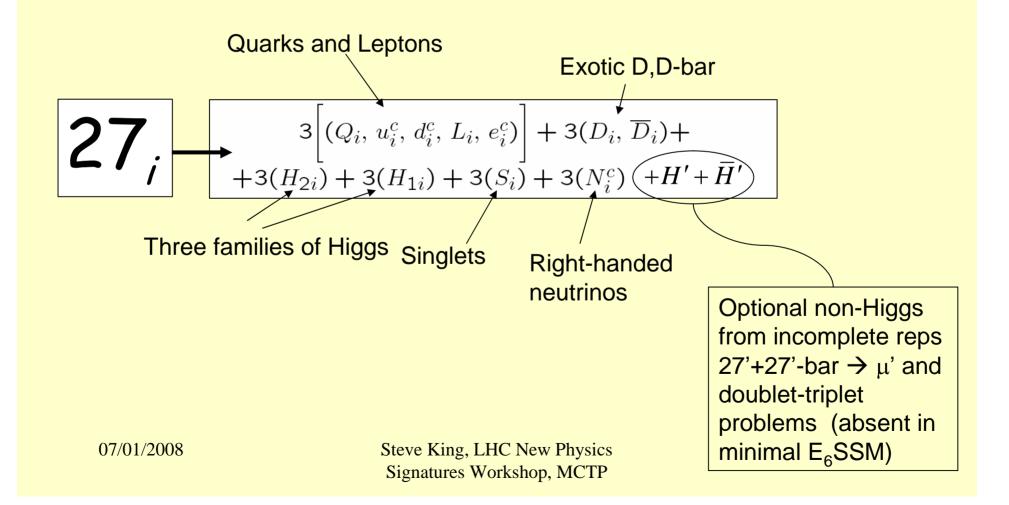
•This is an example of a model where Higgs triplets are not split from doublets

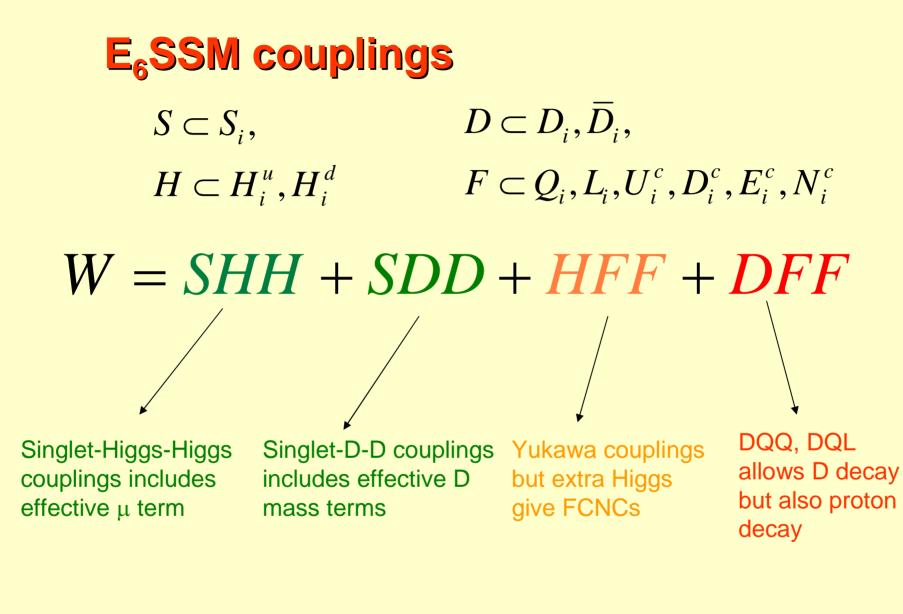

Howl, SFK

Unification at M_P in Minimal E₆SSM



Low energy (below M_{GUT}) three complete families of 27's of E_6


High energy (above $M_{GUT} \sim 10^{16}$ GeV) this is embedded into a left-right symmetric Pati-Salam model and additional heavy Higgs are added.



Unification at M_{GUT} in E_6SSM

Low energy matter content of E₆SSM's

07/01/2008

Two potential problems: rapid proton decay + FCNCs

• FCNC problem may be tamed by introducing a Z_2 under which third family Higgs and singlet are even all else odd \rightarrow only allows Yukawa couplings involving third family Higgs and singlet H_u , H_d , S

Z₂ also forbids all DFF and hence forbids D decay (and p decay)
 → Z₂ cannot be an exact symmetry!
 How do we reconcile D decay with p decay?
 Two strategies: extra exact discrete symmetries or small D Yukawas

- In E₆SSM can have extra discrete symmetries, two possibilities:
- I. Z_2^{L} under which L are odd \rightarrow forbids DQL, allows DQQ \rightarrow exotic D are diquarks
- II. Z_2^B with L & D odd \rightarrow forbids DQQ, allows DQL \rightarrow exotic D are leptoquarks

• Small DFF couplings <10⁻⁸ will suppress p decay sufficiently but couplings >10⁻¹² will allow D decay with lifetime <0.1 s (nucleosynth) N.B. $\Gamma_{\rm D} \propto g^2$, $\Gamma_{\rm p} \propto g^4$ (this is the only possibility in the minimal E₆SSM)

Henceforth assume problems solved by one of these approaches

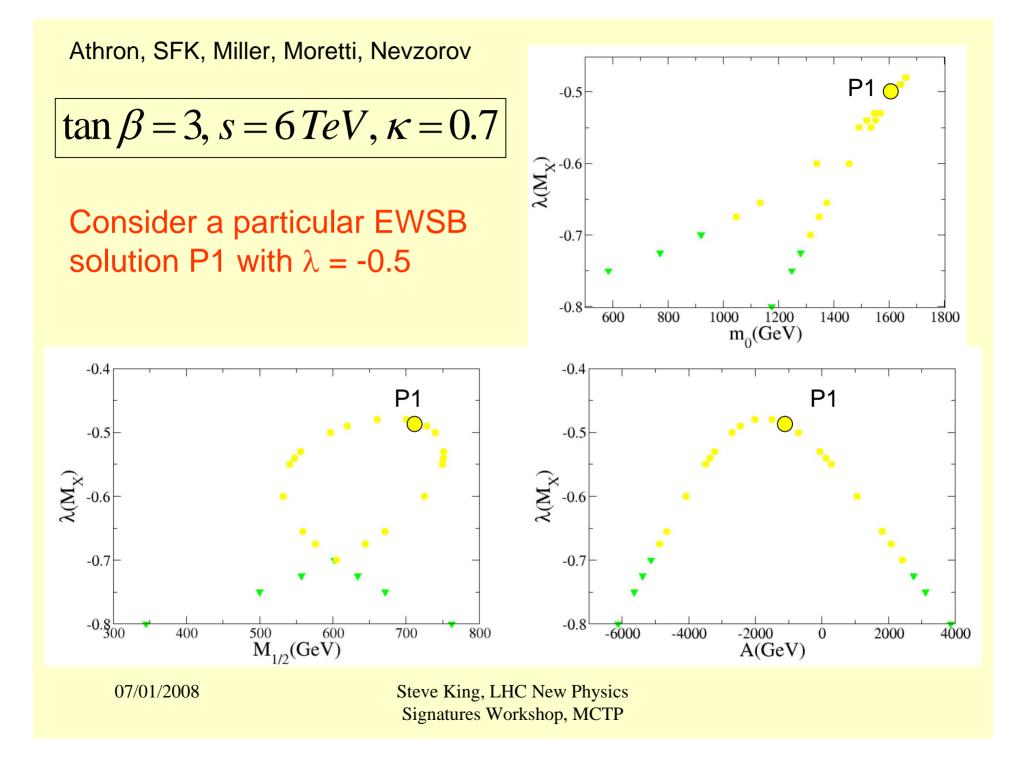
The Constrained E₆SSM

 $W \approx \lambda_i SH_{u,i} H_{d,i} + \kappa_i SD_i \overline{D}_i$

 $+ f_{\alpha j} S_{\alpha} H_{u,\beta} H_{d} + h_{\alpha\beta} S_{\alpha} H_{u} H_{d,\beta}$ $+ h_{t} Q H_{u} t + h_{b} Q H_{d} b + h_{\tau} L H_{d} \tau$

The Z₂ allowed couplings

 $\begin{array}{l} H_{u},\,H_{d},\,S \text{ without indices are} \\ \text{third family Higgs and singlet,} \\ H_{u,\alpha},\,H_{d,\beta},\,S_{\alpha} \text{ are non-Higgs} \end{array}$

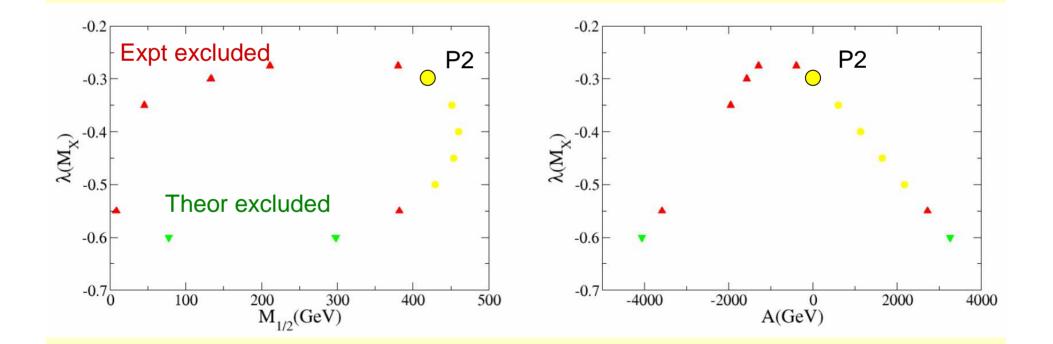

Assume universal soft masses m_0 , A, $M_{1/2}$ at M_{GUT}

In practice, input SUSY and exotic threshold scale μ_S then select tan β and singlet VEV <S>=s and run up third family Yukawas from μ_S to M_{GUT}

Then choose m_0 , A, $M_{1/2}$ at M_{GUT} and run down gauge couplings, Yukawas and soft masses to low energy and minimise Higgs potential for the 3 Higgs fields S, H_u , H_d (even under Z_2)

EWSB is not guaranteed, but remarkably there is always a solution for sufficiently large κ to drive $m_S{}^2$ <0 $\,$ (c.f. large h_t to drive $m_H{}^2$ <0 $\,$)

07/01/2008



Athron, SFK, Miller, Moretti, NevzorovSpectrum for P1
$$[\tan \beta = 3, s = 6 TeV, \kappa = 0.7, \lambda = -0.5]$$

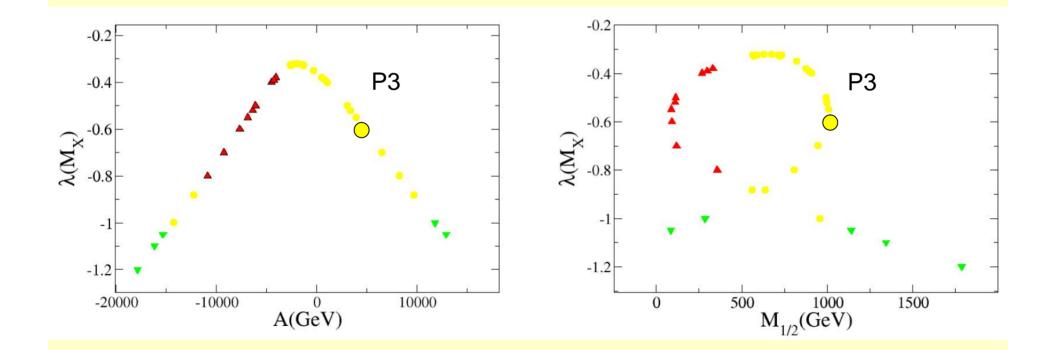
 $M_{\frac{1}{2}} = 700 GeV, m_0 = 1.6 TeV, A = -1 TeV$ $5TeV$ \tilde{D}_3 $M_{\frac{1}{2}} = 700 GeV, m_0 = 1.6 TeV, A = -1 TeV$ $4.7TeV$ \tilde{D}_3 $2.2TeV$ $\chi_{5,6}^0, h_3^0, Z'$ $>1.5TeV$ $\tilde{D}_{1,2}$ $1.8TeV$ H^{\pm}, h_2^0, A $1.8TeV$ $\tilde{Q}, \tilde{t}_2, \tilde{b}, \tilde{L}$ $1.4TeV$ $\chi_{3,4}^0, \chi_2^{\pm}$ $1.8TeV$ $\tilde{Q}, \tilde{t}_2, \tilde{b}, \tilde{L}$ $1.4TeV$ $\chi_{3,4}^0, \chi_2^{\pm}$ $1.8TeV$ $\tilde{D}_{1,2}$ $460GeV$ \tilde{g} $2^{\circ}_2, \chi_1^{\pm}$ $>300GeV$ $D_{1,2}$ $174GeV$ χ_2^0, χ_1^{\pm} $>300GeV$ $D_{1,2}$ $120GeV$ χ_1^0, h_1^0 $??GeV$ mon -Higgsinos $07/01/2008$ Steve King, LHC New Physics $Steve King, LHC New Physics$ $Steve King, LHC New Physics$

Athron, SFK, Miller, Moretti, Nevzorov

$$\tan \beta = 10, s = 6 TeV, \kappa = 0.7$$

Consider a particular EWSB solution P2 with $\lambda = -0.3$

07/01/2008


Spectrum for P2
 Athron, SFK, Miller, Moretti, Nevzorov

$$\tan \beta = 10, s = 6 \ TeV, \kappa = 0.7, \lambda = -0.3$$
 $4.9 \ TeV \ D_{3}^{3}$
 $M_{\frac{1}{2}} = 420 \ GeV, m_0 = 2 \ TeV, A = 20 \ GeV$
 $4.6 \ TeV \ D_{3}^{3}$
 $M_{\frac{1}{2}} = 420 \ GeV, m_0 = 2 \ TeV, A = 20 \ GeV$
 $> 1.5 \ TeV \ D_{1,2}$
 $2.2 \ TeV \ \chi_{5,6}^{0}, h_{3}^{0}, Z'$
 $2.0 \ TeV \ D_{1,2}$
 $1.8 \ TeV \ M^{\pm}, h_{2}^{0}, A$
 $1.5 \ TeV \ D_{1,2}$
 $300 \ GeV \ \chi_{3,4}^{0}, \chi_{2}^{\pm}$
 $300 \ GeV \ D_{1,2}$
 $300 \ GeV \ M_{3,4}^{0}, \chi_{2}^{0}, \chi_{1}^{\pm}$
 $> 300 \ GeV \ D_{1,2}$
 $300 \ GeV \ M_{3,4}^{0}, \chi_{2}^{0}, \chi_{1}^{\pm}$
 $> 300 \ GeV \ M_{1,2}^{0}$
 $300 \ GeV \ M_{3,4}^{0}, \chi_{2}^{0}, \chi_{1}^{\pm}$
 $> 300 \ GeV \ M_{1,2}^{0}$
 $300 \ GeV \ M_{3,4}^{0}, \chi_{2}^{0}, \chi_{1}^{\pm}$
 $> 300 \ GeV \ M_{1,2}^{0}$
 $300 \ GeV \ M_{3,4}^{0}, \chi_{2}^{0}, \chi_{1}^{\pm}$
 $> 300 \ GeV \ M_{1,2}^{0}$
 $300 \ GeV \ M_{1,2}^{0}, \chi_{1}^{0}, \chi_{2}^{0}, \chi_{1}^{\pm}$
 $? \ GeV \ M_{1}^{000}$
 $9701/2008$
 Steve King, LHC New Physics

Athron, SFK, Miller, Moretti, Nevzorov

$$\tan \beta = 10, s = 20 TeV, \kappa = 1.8$$

Consider a particular EWSB solution P3 with $\lambda = -0.6$

07/01/2008

Spectrum for P3Athron, SFK, Miller, Moretti, Nevzorov
$$\tan \beta = 10, s = 20TeV, \kappa = 1.8, \lambda = -0.6$$
 $17TeV \dots \tilde{D}_3, D_3$ $\boxed{\tan \beta = 10, s = 20TeV, \kappa = 1.8, \lambda = -0.6}$ $17TeV \dots \tilde{D}_{1,2}$ $\boxed{M_{\frac{1}{2}} = 1TeV, m_0 = 5.5TeV, A = 4.6TeV}$ $> 4TeV \dots \tilde{D}_{1,2}$ $7.5TeV \dots \chi_{5.6}^0, h_3^0, Z'$ $5.5TeV \dots \tilde{D}_{1,2}$ $7.5TeV \dots \chi_{5.6}^0, h_3^0, Z'$ $5.5TeV \dots \tilde{Q}, \tilde{t}_3, \tilde{b}, \tilde{L}$ $4.9TeV \dots H^{\pm}, h_2^0, A$ $4TeV \dots \tilde{t}_1$ $3.5TeV \dots \chi_{3.4}^0, \chi_2^{\pm}$ $5300GeV \dots D_{1,2}$ $650GeV \dots \tilde{g}$ $230GeV \dots \chi_2^0, \chi_1^{\pm}$ $130GeV \dots \chi_1^0, h_1^0$ $??GeV \dots M_{\text{Higgsinos}}^{\text{non-Higgs}}$

07/01/2008

Note the characteristic spectrum

For a given low energy M_1 , M_2 , M_3 need a larger $M_{1/2}$ than in the MSSM

Lightest states are h_1^0 and gauginos:

 $m_{\chi_1^0} \simeq M_1, \qquad m_{\chi_2^0} \simeq m_{\chi_1^\pm} \simeq M_2, \qquad m_{\tilde{g}} \simeq M_3$

Remaining gauginos, Higgs and Z' are much heavier (ignoring non-Higgs and non-Higgsinos)

$$m_{\chi_2^{\pm}} \simeq m_{\chi_{3,4}^0} \simeq \mu = \frac{\lambda}{\sqrt{2}} s$$

$$|m_{\chi_5^0}| \simeq |m_{\chi_6^0}| \simeq m_{h_3^0} \simeq M_{Z'}$$

$$m_{H^{\pm}} \simeq m_{h_2^0} \simeq m_A$$

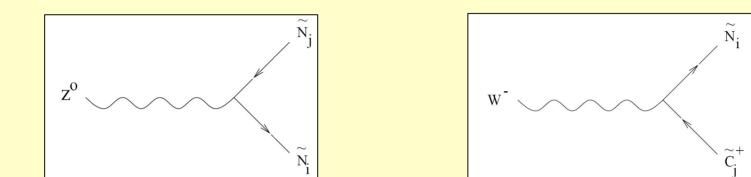
Generally $m_0 > M_{1/2} \rightarrow$ heavy squarks, sleptons with

$$\frac{m_0}{M_{1/2}} \propto \tan\beta$$

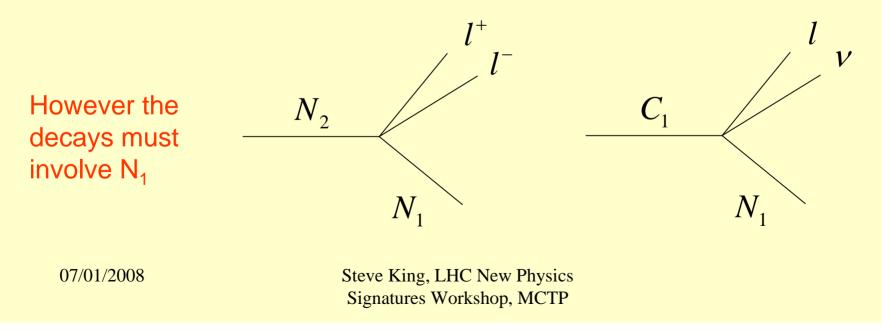
07/01/2008

Consider the lightest gaugino states

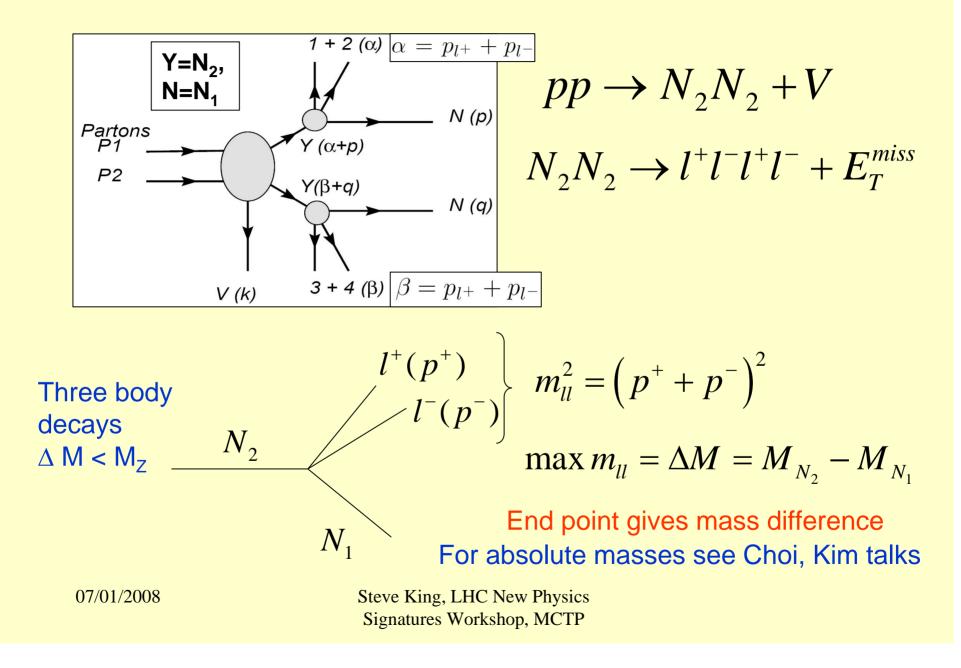
Gluino
$$M_3 \sim 0.7 M_{\frac{1}{2}}$$
 — \tilde{g}

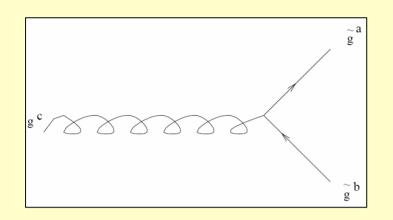

~ Wino
$$M_2 \sim 0.25 M_{\frac{1}{2}}$$
 ------ $N_2 = \chi_2^0, \quad C_1 = \chi_1^{\pm}$

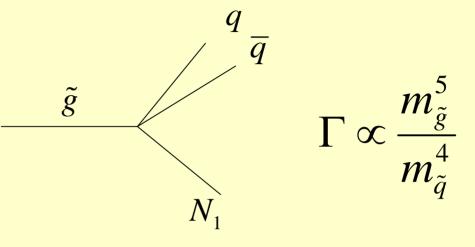
~ Bino
$$M_1 \sim 0.15 M_{\frac{1}{2}}$$
 _____ $N_1 = \chi_1^0$

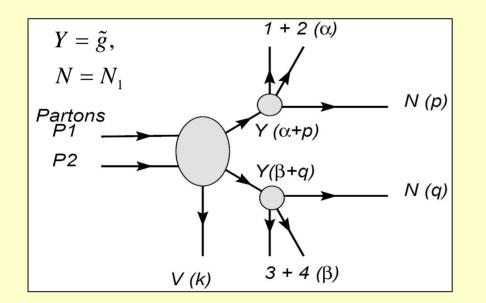

$$M_{\frac{1}{2}} = 400 - 1000 GeV$$

07/01/2008

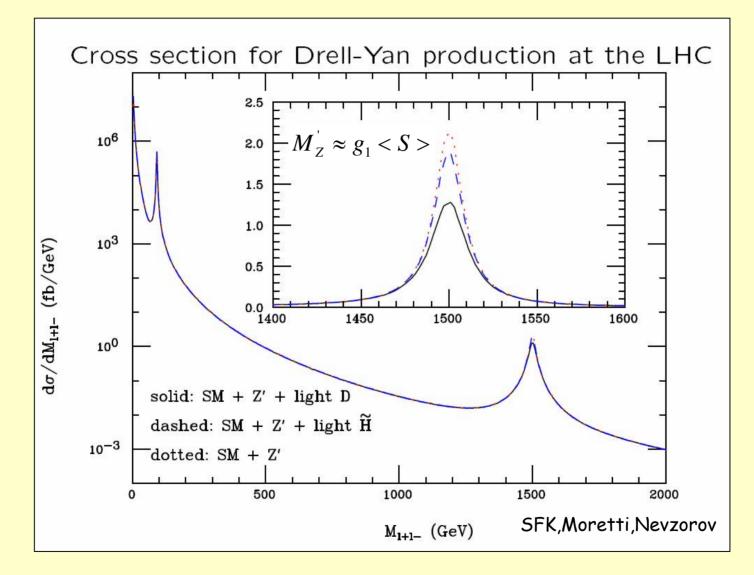

Chargino and neutralino production and decay


N.B. Wino production only is allowed (no Bino production via W,Z) \rightarrow Expect N₂N₂, N₂C₁, C₁C₁ pair production (not involving the N₁~ Bino)




e.g. N₂N₂ production and decay

Gluinos are light < 1 TeV and easily produced

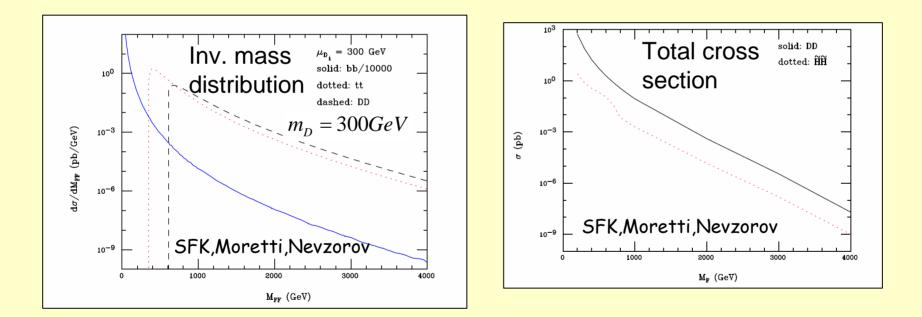

$$pp \rightarrow \tilde{g}\tilde{g} + V$$

$$\tilde{g}\tilde{g} \rightarrow q\overline{q}q\overline{q} + E_T^{miss}$$

For gluino mass see Choi, Kim talks

07/01/2008

Z' < 5 TeV can be discovered

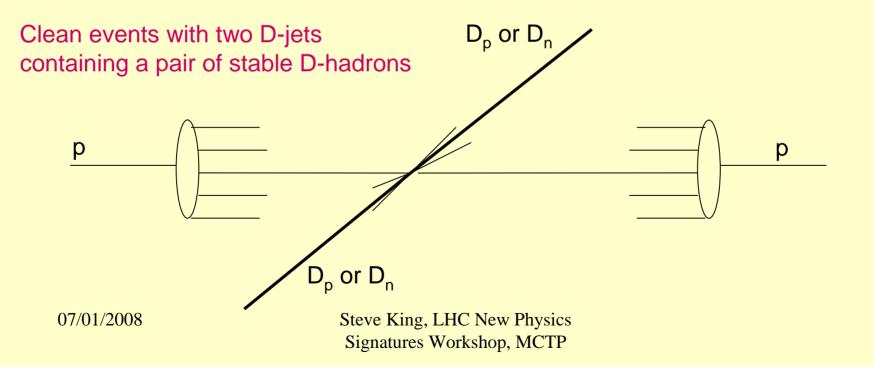


07/01/2008

Steve King, LHC New Physics Signatures Workshop, MCTP

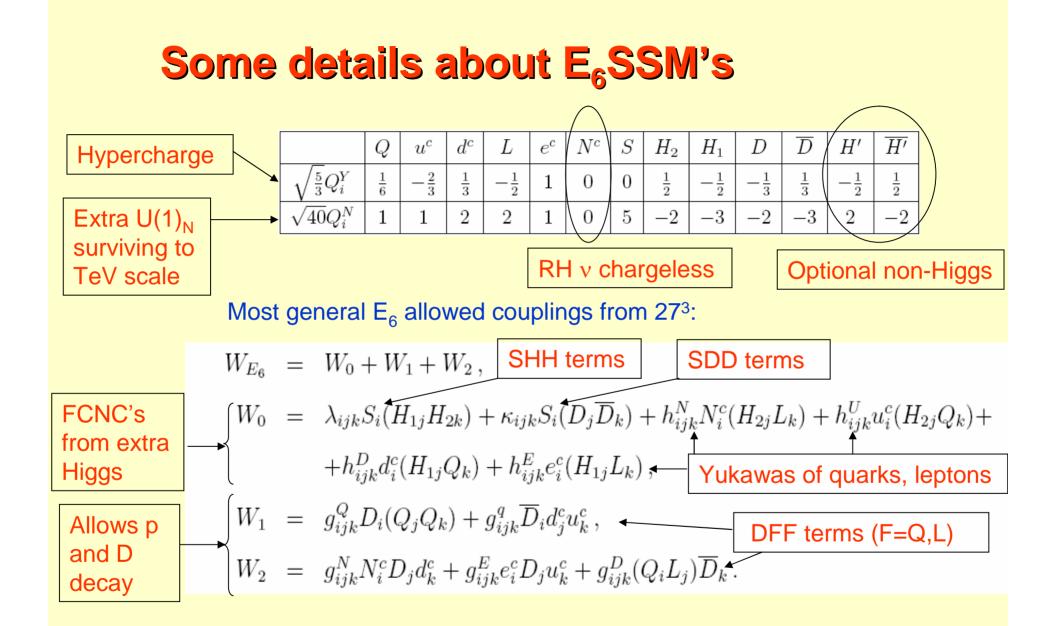
Exotic D-quarks in E₆SSM

Usual case is of scalar leptoquarks, here we have novel case of D being fermonic leptoquarks or diquarks


07/01/2008

Novel signatures of D quarks

In E_6 SSM it is possible that the D fermions decay rapidly as leptoquarks or diquarks giving missing energy in the final state (Brent Nelson's talk)


However it is also possible that DFF couplings are highly suppressed giving rise to long lived D quarks giving jets containing heavy long lived D-hadron

D-hadrons resemble protons or neutrons but with mass >300 GeV: $D_n = \overline{D}u$, $D_n = \overline{D}d$

- E₆ SSM's are well motivated from string theory
- Generally lead to lower fine tuning
- Unification at GUT scale or Planck scale (ME₆SSM)
- ME_6SSM solves μ problem without doublet-triplet splitting
- CE₆SSM has successful EWSB and leads to a characteristic SUSY spectrum with light gauginos, and heavy Z'
- D quarks can either decay promptly as fermionic leptoquarks or diquarks, or can be long lived \rightarrow spectacular LHC signals

07/01/2008

EWSB minimisation conditions

$$\begin{split} \frac{\partial V}{\partial s} &= m_S^2 s - \frac{\lambda A_\lambda}{\sqrt{2}} v_1 v_2 + \frac{\lambda^2}{2} (v_1^2 + v_2^2) s + \\ &+ \frac{g_1'^2}{2} \Big(\tilde{Q}_1 v_1^2 + \tilde{Q}_2 v_2^2 + \tilde{Q}_S s^2 \Big) \tilde{Q}_S s + \frac{\partial \Delta V}{\partial s} = 0 \,, \\ \frac{\partial V}{\partial v_1} &= m_1^2 v_1 - \frac{\lambda A_\lambda}{\sqrt{2}} s v_2 + \frac{\lambda^2}{2} (v_2^2 + s^2) v_1 + \frac{\bar{g}^2}{8} \Big(v_1^2 - v_2^2) \Big) v_1 + \\ &+ \frac{g_1'^2}{2} \Big(\tilde{Q}_1 v_1^2 + \tilde{Q}_2 v_2^2 + \tilde{Q}_S s^2 \Big) \tilde{Q}_1 v_1 + \frac{\partial \Delta V}{\partial v_1} = 0 \,, \\ \frac{\partial V}{\partial v_2} &= m_2^2 v_2 - \frac{\lambda A_\lambda}{\sqrt{2}} s v_1 + \frac{\lambda^2}{2} (v_1^2 + s^2) v_2 + \frac{\bar{g}^2}{8} \Big(v_2^2 - v_1^2 \Big) v_2 + \\ &+ \frac{g_1'^2}{2} \Big(\tilde{Q}_1 v_1^2 + \tilde{Q}_2 v_2^2 + \tilde{Q}_S s^2 \Big) \tilde{Q}_2 v_2 + \frac{\partial \Delta V}{\partial v_2} = 0 \,, \end{split}$$

With λ , κ , s , v_1 , v_2 fixed these fix m_1 , m_2 and m_s which are given by

$$\begin{split} m_S^2(\mu_S) &= -0.649 \, m_0^2 - 1.680 \, M_{1/2}^2 - 0.076 \, A^2 - 0.226 \, A M_{1/2}, \\ m_{H_u}^2(\mu_S) &= -0.0296 \, m_0^2 - 1.353 \, M_{1/2}^2 - 0.116 \, A^2 - 0.470 \, A M_{1/2}, \\ m_{H_d}^2(\mu_S) &= 0.893 \, m_0^2 + 0.360 \, M_{1/2}^2 - 0.0113 \, A^2 + 0.0123 \, A M_{1/2}, \end{split}$$

Leading to quadratic equations for m_0 , $M_{1/2}$, A with two solutions

07/01/2008